JinaChat
This notebook covers how to get started with JinaChat chat models.
from langchain_community.chat_models import JinaChat
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
chat = JinaChat(temperature=0)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French. I love programming."
),
]
chat(messages)
AIMessage(content="J'aime programmer.", additional_kwargs={}, example=False)
You can make use of templating by using a MessagePromptTemplate
. You can build a ChatPromptTemplate
from one or more MessagePromptTemplates
. You can use ChatPromptTemplate
's format_prompt
-- this returns a PromptValue
, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convenience, there is a from_template
method exposed on the template. If you were to use this template, this is what it would look like:
template = (
"You are a helpful assistant that translates {input_language} to {output_language}."
)
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages(
[system_message_prompt, human_message_prompt]
)
# get a chat completion from the formatted messages
chat(
chat_prompt.format_prompt(
input_language="English", output_language="French", text="I love programming."
).to_messages()
)
AIMessage(content="J'aime programmer.", additional_kwargs={}, example=False)
Related
- Chat model conceptual guide
- Chat model how-to guides